Jump to content

Artemis Generation Shines During NASA’s 2024 Lunabotics Challenge 


Recommended Posts

  • Publishers
Posted
A team from Iowa accepts its Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.
A team from Iowa accepts the Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Derrol Nail
Photo credit: NASA/Derrol Nail

Members of the Artemis Generation kicked up some simulated lunar dust as part of NASA’s 2024 Lunabotics Challenge, held at The Astronauts Memorial Foundation’s Center for Space Education at the agency’s Kennedy Space Center Visitor Complex in Florida. When the dust settled, two teams emerged from Artemis Arena as the grand prize winners of this year’s competition. 

Teams from Iowa State University and the University of Alabama shared the Artemis grand prize award for scoring the most cumulative points during the annual competition. Judges scored competing teams on project management plans, presentations and demonstrations, systems engineering papers, robotic berm building, and science, technology, engineering, and math (STEM) engagement.  

This is the first time in Lunabotics’ 15-year history that the competition ended in a tie for the top prize, and most likely the last time.  

“Both teams earned their win, but a tie was never on the table,” said Rich Johanboeke, project manager at NASA’s Kennedy Space Center in Florida. “These students work hard and sacrifice much throughout the year to be a part of this challenge and to come to Kennedy, so our team will look into creating a tie-breaking event for future events.” 

Alabama's team lead, Ben Gulledge, is pictured with the team’s winning rover during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.
Alabama’s team lead, Ben Gulledge, is pictured with the team’s winning rover during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.
Photo credit: NASA/Derrol Nail

While previous Lunabotics competitions focused on lunar mining, this year’s competition reflected the current needs of NASA’s Artemis missions. Teams designed, built, and operated autonomous robotic rovers capable of building a berm structure from lunar regolith. Among other uses, berms on the Moon could provide protection against blast and material ejected during lunar landings and launches, shade cryogenic propellant tank farms, or shield a nuclear power plant from space radiation. 

Of the 58 college teams across the country that applied to the challenge, 42 were invited to demonstrate their robotic rovers during the qualifying round held in the Exolith Lab at the University of Central Florida in Orlando. From there, 10 finalist teams made the short trip to Kennedy for the two-day final round, where their robots attempted to construct berms from simulated lunar regolith inside Artemis Arena.  

“During the competition we had over 150 berm construction runs in the arena,” said Robert Mueller, senior technologist for Advanced Products Development in NASA’s Exploration Research and Technology Programs Directorate, as well as lead judge and co-founder of the original Lunabotics robotic mining challenge. “So, teams went into the arena 150 times and created berms – that’s pretty impressive. And 28 teams, which is 65% of the teams that attended, achieved berm construction points, which is the highest we have ever had. That speaks to the quality of this competition.”  

Teams competing in this year’s Lunabotics applied the NASA Systems Engineering Process to create their prototype robots and spent upwards of nine months focused on making their designs realities.  

“We really put a lot of work in this year,” said Vivian Molina Sunda, team and electrical lead for University of Illinois at Chicago. “Our team of 10 put in about 3,400 hours, so it’s really exciting to get to Kennedy Space Center and know we made the top 10.”  

The University of Illinois team received two awards for its efforts – the Mission Control “Failure is Not an Option” Award for Team Persistence and the Innovation Technology Award for best design based on creative construction, innovative technology, and overall architecture. 

Lunabotics teams prepare robots for competition inside the Artemis Arena during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.
Lunabotics teams prepare robots to compete inside the Artemis Arena during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.
Photo credit: NASA/Derrol Nail

For the hundreds of Artemis Generation members who took part in this year’s competition, Lunabotics was an opportunity to connect to NASA’s mission, work, and people, while also using classroom skills and theories in ways that will benefit them in future STEM careers.  

“We go into engineering because we want to do stuff, we want to make things,” said Ben Gulledge, team and mechanical lead for the University of Alabama’s Artemis grand prize co-winning team. “This competition gives you the opportunity to take all your classroom theory and put it into practice and learn where your gaps in knowledge are. So, you learn to be a better designer and learn where you can improve in the future.” 

Coordinated by NASA’s Office of STEM Engagement, the Lunabotics competition is one of NASA’s Artemis Student Challenges, designed to engage and retain students in STEM fields. These challenges are designed to provide students with opportunities to research and design in the areas of science, technology, engineering, and math, while fostering innovative ideas and solutions to challenges likely to be faced during the agency’s Artemis missions.  

To view the complete list of NASA’s 2024 Lunabotics Challenge winners, or for more information visit:  

https://www.nasa.gov/learning-resources/lunabotics-challenge/

Winners List 
 

Artemis Grand Prize 

Iowa State University, The University of Alabama 

Robotic Construction Award  

First Place – Iowa State University  

Second Place – The University of Alabama  

Third Place – University of Utah  

Systems Engineering Paper Award 
First Place – College of DuPage 
Second Place – The University of Alabama 
Third Place – Purdue University-Main Campus 

Leaps and Bounds Award 
New York University 

Nova Award for Stellar Systems Engineering by a First Year Team 

Ohio State University 

STEM Engagement Award 
First Place – University of North Florida 
Second Place – Auburn University 
Third Place – Iowa State University 

Honorable Mention – Harrisburg University of Science and Technology 

Presentation and Demonstration 
First Place – University of North Carolina at Charlotte 
Second Place – Purdue University-Main Campus 
Third Place – University of Utah 

First Steps Award – Best Presentation by a First Year Team  

Harrisburg University of Science and Technology 

Innovation Technology Award 

University of Illinois at Chicago  

The Mission Control “Failure is Not an Option” Award for Team Persistence 

University of Illinois at Chicago 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read NASA Announces Winners of 2025 Human Lander Challenge
      NASA’s Human Lander Challenge marked its second year on June 26, awarding $18,000 in prize money to three university teams for their solutions for long-duration cryogenic, or super chilled, liquid storage and transfer systems for spaceflight.
      Building on the crewed Artemis II flight test, NASA’s Artemis III mission will send astronauts to explore the lunar South Pole region with a human landing system and advanced spacesuits, preparing humanity to ultimately go to Mars. In-space propulsion systems that use cryogenic liquids as propellants must stay extremely cold to remain in a liquid state and are critical to mission success. The Artemis mission architecture will need these systems to function for several weeks or even months.
      Students and advisors with the 12 finalist teams for the 2025 Human Lander Challenge competed in Huntsville, Alabama, near the agency’s Marshall Space Flight Center between June 24-26. NASA/Charles Beason NASA announced Embry-Riddle Aeronautical University, Prescott as the overall winner and recipient of the $10,000 top prize award. Old Dominion University won second place and a $5,000 award, followed by Massachusetts Institute of Technology in third place and a $3,000 award.
      Before the winners were announced, 12 finalist teams selected in April gave their presentations to a panel of NASA and industry judges as part of the final competition in Huntsville. As part of the 2025 Human Lander Challenge, university teams developed systems-level solutions that could be used within the next 3-5 years for Artemis.
      NASA selected Embry-Riddle Aeronautical University, Prescott as the overall winner of NASA’s 2025 Human Lander Challenge Forum June 26. Lisa Watson-Morgan, manager of NASA’s Human Landing System Program, presented the awards at the ceremony. NASA/Charles Beason “Today’s Golden Age of Innovation and Exploration students are tomorrow’s mission designers, systems engineers, and explorers,” said Juan Valenzuela, main propulsion systems and cryogenic fluid management subsystems lead for NASA’s Human Landing System Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The Human Lander Challenge concepts at this year’s forum demonstrate the ingenuity, passion, and determination NASA and industry need to help solve long-duration cryogenic storage challenges to advance human exploration to deep space.”
      The challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 27, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge Artemis General Human Landing System Program Humans in Space Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Human Landing System
      Space Launch System (SLS)
      Marshall Space Flight Center manages the Space Launch System (SLS), an integrated super heavy lift launch platform enabling a new…
      Humans In Space
      Orion Capsule
      NASA’s Orion spacecraft is built to take humans farther than they’ve ever gone before. Orion will serve as the exploration…
      View the full article
    • By European Space Agency
      Asteroid 2024 YR4 made headlines earlier this year when its probability of impacting Earth in 2032 rose as high as 3%. While an Earth impact has now been ruled out, the asteroid’s story continues.
      The final glimpse of the asteroid as it faded out of view of humankind’s most powerful telescopes left it with a 4% chance of colliding with the Moon on 22 December 2032.
      The likelihood of a lunar impact will now remain stable until the asteroid returns to view in mid-2028. In this FAQ, find out why we are left with this lingering uncertainty and how ESA's planned NEOMIR space telescope will help us avoid similar situations in the future.
      View the full article
    • By NASA
      NASA For some people, a passion for space is something that might develop over time, but for Patrick Junen, the desire was there from the beginning. With a father and grandfather who both worked for NASA, space exploration is not just a dream; it remains a family legacy.
      Now, as the stage assembly and structures subsystem manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the BOLE (Booster Obsolescence Life Extension) Program — an advanced solid rocket booster for NASA’s SLS (Space Launch System) heavy lift rocket — Junen is continuing that legacy.
      “My grandfather worked on the Apollo & Space Shuttle Programs. Then my dad went on to work for the Space Shuttle and SLS Programs,” Junen says. “I guess you could say engineering is in my blood.”
      In his role, he’s responsible for managing the Design, Development, Test, & Evaluation team for all unpressurized structural elements, such as the forward skirt, aft skirt, and the integration hardware that connects the boosters to the core stage. He also collaborates closely with NASA’s Exploration Ground Systems at Kennedy Space Center in Florida to coordinate any necessary modifications to ground facilities or the mobile launcher to support the new boosters.
      Junen enjoys the technical challenges of his role and said he feels fortunate to be in a position of leadership — but it takes a team of talented individuals to build the next generation of boosters. As a former offensive lineman for the University of Mississippi, he knows firsthand the power of teamwork and the importance of effective communication in guiding a coordinated effort.
      “I’ve always been drawn to team activities, and exploration is the ultimate team endeavor,” Junen says. “On the football field, it takes a strong team to be successful — and it’s really no different from what we’re doing as a team at NASA with our Northrop Grumman counterparts for the SLS rocket and Artemis missions.”
      As a kid, Junen often accompanied his dad to Space Shuttle launches and was inspired by some of the talented engineers that developed Shuttle. Years later, he’s still seeing some of those same faces — but now they’re teammates, working together toward a greater mission.
      “Growing up around Marshall Space Flight Center in Huntsville, Alabama, there was always this strong sense of family and dedication to the Misson. And that has always resonated with me,” Junen recalls.
      This philosophy of connecting family to the mission is a tradition Junen now continues with his own children. One of his fondest NASA memories is watching the successful launch of Artemis I on Nov. 16, 2022. Although he couldn’t attend in person, Junen and his family made the most of the moment — watching the launch live beneath the Saturn V rocket at Huntsville’s U.S. Space & Rocket Center. With his dad beside him and his daughter on his shoulders, three generations stood beneath the rocket Junen’s grandfather helped build, as a new era of space exploration began.
      In June, Junen witnessed the BOLE Demonstration Motor-1 perform a full-scale static test to demonstrate the ballistic performance for the evolved booster motor. This test isn’t just a technical milestone for Junen — it’s a continuation of a lifelong journey rooted in family and teamwork.
      As NASA explores the Moon and prepares for the journey to Mars through Artemis, Junen is helping shape the next chapter of human spaceflight. And just like the generations before him, he’s not only building rockets — he’s building a legacy.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.
      Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.
      To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.
      “Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”

      During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.
      An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.
      “Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.
      As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.

      Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.
      The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.
      To learn how space communications and navigation capabilities support every agency mission, visit:
      https://www.nasa.gov/communicating-with-missions


      Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 1 week ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
      Article 2 weeks ago View the full article
    • By Space Force
      A nationwide reading program was created to encourage kindergarten through eighth-grade students to read 12 books during the summer break.
      View the full article
  • Check out these Videos

×
×
  • Create New...